
Real-Time Simulation of 
Material Point Method on 

Modern GPUs
GTC 2022

Yun Fei, Yuhan Huang, Ming Gao



Content

• Background

• Single GPU

• Multiple GPU

• Benchmark and demo

2



Previous work

Single GPU
Ming Gao et al. 

SIGGRAPH Asia 2018

Single GPU
Taichi language

Yuanming Hu et al. 
SIGGRAPH Asia 2019

Single and multi GPU
Xinlei Wang et al. 
SIGGRAPH 2020

Single and multi GPU
Our work

single: 1.7x-8.6x
multiple: 2.5x-14.8x

3

1.2x

2x



Material point method (MPM)

4



GPU pipeline

P2G

Grid 
computation

G2P

Rebuild mapping

Particle sorting
P2G

Grid 
computation

G2P

5



Sparse representation of grid

• Grid nodes are grouped as blocks
• Only a finite number of blocks are stored in memory

• In space, one block corresponds to 4x4x4 cells

• In memory, one block corresponds to 4x4x4 nodes
• We store information on the min corner of each cell

6



Challenge

• Given a group of particles, how to decide the sparsity of the 
underlying background grid?
• The number of blocks and where they are

• Simpler version: given one particular particle, how to find the 
addresses of the nodes it interacts with?

*B-spline quadratic kernel is assumed7



Particle partitioning

• Particles are partitioned into particle blocks
• Particle blocks do not perfectly overlap with grid blocks 

• There is (𝛼 * dx) shift between the two

• Different works adopt different 𝛼 and we use -0.5

particle 
block

grid 
block

8



Particle partitioning

• Particles are partitioned into particle blocks
• Particle blocks do not perfectly overlap with grid blocks 

• There is (𝛼 * dx) shift between the two

• Different works adopt different 𝛼 and we use -0.5

• The partitioning was applied every time step
• However, partitioning itself is not the target

• The target is much simpler: given a particle, we can find the 
addresses of the nodes it interacts with

• We make this partitioning much less frequent in 
this work

particle 
block

grid 
block

9



Gblock vs pblock

• Geometric blocks (gblock, in space)
• The grid blocks

• Correspond to particle blocks (with some shifts)

• Physical blocks (pblock, in memory)
• As particles talk to 3x3x3 nodes, also allocate memories for the neighboring 

blocks
• Given a gblock, explicitly store its 3x3x3 neighbors in a list

• Gblock is a subset of pblock

10



Code vs id

Each particle (or the cell it resides in) 
has a code

• Simply interleave the 32-bit of the 
3d index (i, j, k) to a 64-bit 1d code
• i31, i30, …i0; j31, j30, …j0; k31, k30, 

…k0
• (i20, i19 …, i2, j20, j19 …, j2, k20, k19 

…, k2) + (i1, i0, j1, j0, k1, k0)

• The lower bits represent the cell 
inside a block (cell code)

• While the higher bits represent the 
block information (block code)

11



Code vs id

Each particle (or the cell it resides in) 
has a code

• Simply interleave the 32-bit of the 
3d index (i, j, k) to a 64-bit 1d code
• i31, i30, …i0; j31, j30, …j0; k31, k30, 

…k0
• (i20, i19 …, i2, j20, j19 …, j2, k20, k19 

…, k2) + (i1, i0, j1, j0, k1, k0)

• The lower bits represent the cell 
inside a block (cell code)

• While the higher bits represent the 
block information (block code)

We use hash table to decide the 
gblock group first, and then the 
pblock group

• The hash table assigns each pblock 
a unique id

• (key, value) pair is (block code, its 
unique id) pair

• code vs id
• id is dense, starting from 0

• code is sparse

12



Code vs id

Code

• 64 bits

• Sparse
• a small subset

• Encode space information

Id

• 32 bits

• Dense
• each id has a code

• Encode memory information

13



Content

• Background

• Single GPU

• Multiple GPU

• Benchmark and demo

14



Principles for Real-Time (Single GPU)

• Reducing memory reallocation once the simulation starts

• Minimizing the synchronization between GPU and CPU

• Fine-tuning the CUDA block size and the usage of on-chip memory

• Minimizing the number of CUDA kernels executed within a single time 
step

• Avoiding intrinsic functions without native hardware support

15



Principles for Real-Time (Single GPU)

• Reducing memory reallocation once the simulation starts

• Minimizing the synchronization between GPU and CPU

• Fine-tuning the CUDA block size and the usage of on-chip memory

• Minimizing the number of CUDA kernels executed within a single time 
step

• Avoiding intrinsic functions without native hardware support

16



Principles for Real-Time (Single GPU)

• Reducing memory reallocation once the simulation starts

• Minimizing the synchronization between GPU and CPU

• Fine-tuning the CUDA block size and the usage of on-chip memory

• Minimizing the number of CUDA kernels executed within a single time 
step
• Merge kernels

• Avoid non-essential computations

• Avoiding intrinsic functions without native hardware support

17



Merge kernels 

• Pros
• Reduce global memory accesses

• System state vs temporary state
Plasticity 

Projection

Elasticity

P2G

U V Sigma

Deformation gradient

Stress

SVD

Deformation gradient

P2G

Deformation gradient

18



Merge kernels 

• Pros
• Reduce global memory accesses

• System state vs temporary state

• Reduce tail effect

• Better chance to overlap memory 
operations with computations

19



Merge kernels 

• Pros
• Reduce global memory accesses

• System state vs temporary state

• Reduce tail effect

• Better chance to overlap memory 
operations with computations

• Cons (merge too many kernels)
• Spill registers to local memory

• Higher instruction cache miss

• (G2P2G in Xinlei Wang et al. 
2020) Forbid Lagrangian MPM 
model & particle insertion and 
deletion

20



Minimize non-essential computations

• Identify non-essential stages
• Sparse grid -> dense grid

• Sequential accesses -> random 
order access

P2G

Grid 
computation

G2P

Rebuild mapping

Particle sorting

21



Rebuild-mapping

• Used to execute every time 
step, why?
• Particles advect at the end of 

every time step

• We propose the idea of free 
zone
• A zone that is free from 

rebuilding the mapping

• Particles can freely move in a 
domain of (10dx)^3 without 
triggering 

Free 
zone

Initial particle block

22



Perfectly 
portioned 
particle blocks

23



24



25



Perfectly 
portioned 
particle blocks

26



Particles 
move around

27



Overlap with 
each other but 
still no rebuild-
mapping 
needed

28



Particle sorting

• Each thread handles one particle and 
one warp handles 32 particles in 
parallel

• Particles in the same warp may 
simultaneously write to the same node
• Option 1 (Yuanming Hu et al. 2019): 

randomly shuffle particles such that the 
chance of conflict in a warp becomes low

• Option 2 (Ming Gao et al. 2018): apply 
warp-level reduction (need to sort 
particles to cells)

• We propose a mixed sorting

29



Combine cheap and expensive sorting

Expensive/complete sorting 

(During rebuild-mapping)

• Apply the complete sorting

• both block-level and cell-level

• update the number of 
warps and refresh the particles 
in each warp

• Reduce number of conflicts in a 
global sense

30



Combine cheap and expensive sorting

Expensive/complete sorting 

(During rebuild-mapping)

• Apply the complete sorting

• both block-level and cell-level

• update the number of 
warps and refresh the particles 
in each warp

• Reduce number of conflicts in a 
global sense

Cheap sorting
(Between two rebuild-mappings)
• Only apply radix sorting to 32 

particles in each warp
• only cell-level
• the number of warps and the 

particles in each warp remain 
unchanged

• merge the cheap sorting into P2G to 
further reduce cost

• Reduce number of conflicts in a 
local sense
• Not optimal, but still reasonable

31



8 atomics reduce to 3 atomics by warp-
level reduction proposed in Gao et al. 
2018

8 atomics reduce to 6 atomics.
Not optimal, but still acceptable as cell-
level sorting is much cheaper than a 
complete sorting

After several steps:

32



P2G

Grid 
computation

G2P

Rebuild mapping

Particle sorting

Step 0 Step1

P2G

Grid 
computation

G2P

Step2

P2G

Grid 
computation

G2P

Step3

P2G

Grid 
computation

G2P

Step4

P2G

Grid 
computation

G2P

…

P2G

Grid 
computation

G2P

Rebuild mapping

Particle sorting

Step N

…

33



Step 0

Step 1

Step 2 Step 3

Step 4

Step 5

Step 6

From step 1 to step 5, no rebuild-mapping is needed
34



Principles for Real-Time (Single GPU)

• Reducing memory reallocation once the simulation starts

• Minimizing the synchronization between GPU and CPU

• Fine-tuning the CUDA block size and the usage of on-chip memory

• Minimizing the number of CUDA kernels executed within a single time 
step
• Merge kernels

• Avoid non-essential computations

• Avoiding intrinsic functions without native hardware support

35



Principles for Real-Time (Single GPU)

• Reducing memory reallocation once the simulation starts

• Minimizing the synchronization between GPU and CPU

• Fine-tuning the CUDA block size and the usage of on-chip memory

• Minimizing the number of CUDA kernels executed within a single time 
step

• Avoiding intrinsic functions without native hardware support

36



Avoid non-native intrinsics

• Native intrinsics – translated to 
only one or very few low level 
instructions

• With hardware support

• Example: float atomicAdd to 
global memory

• Non-native intrinsics – translated 
to multiple low level instructions

• Software implementation

• Example: float atomicAdd to 
shared memory
• implemented by loop + atomic 

compare-and-swap

• Example: floating-point 
operations: 

𝑥

𝑦
, sinf(x), logf(x)

• when precision is not critical, 
compile with “-use_fast_math” flag

37



Revisit conflicts in P2G

• Multiple particles/threads 
simultaneously write to the 
same node

• Warp-level reduction resolves 
conflicts within each warp

• Still need to handle conflicts 
between threads from 
different warps/blocks

• Previous works all rely on shared 
memory to convert some of the 
global conflicts to shared conflicts
• Idea is good

• However, there does not exist native 
shared atomics

• Bring in many restrictions

• We directly write from threads to 
global addresses without using 
shared memory as the scratchpad

38



Restrictions due to shared memory

• One CUDA block handles particles 
from the same block
• Particles are grouped to virtual blocks 
(when one particle block has too many 
particles to fit in one CUDA block)

• Large CUDA block size
• 512 threads per CUDA block

• Shared memory has limited size
• 2x2x2 neighboring blocks are 

adopted

• Synchronization before writing 
from shared to global

39



Restrictions due to shared memory

• One CUDA block handles particles 
from the same block
• Particles are grouped to virtual blocks 
(when one particle block has too many 
particles to fit in one CUDA block)

• Large CUDA block size
• 512 threads per CUDA block

• Shared memory has limited size
• 2x2x2 neighboring blocks are 

adopted

• Synchronization before writing 
from shared to global

• One CUDA block handles warps 
from different blocks
• Particles are grouped to warps

• Flexible CUDA block size
• 4 warps per CUDA block

• We can use larger 3x3x3 
neighboring blocks 
• Compatible with free zone

• No synchronization required 
during P2G

40



Content

• Background

• Single GPU

• Multiple GPU

• Benchmark and demo

41



From single GPU to multiple GPUs

• Challenge from multiple-GPU:
• Inter-GPU bandwidth is significant lower, and the latency is much higher.

• We must minimize the cost on inter-GPU communication.

• Multiple GPU parallel approaches:
• Job splitting by particles

• Need reduce sum on grid data after P2G

• Job splitting by grids
• Need to move particles between GPUs 

42



Job splitting by particles

• Computation job are divided by assigning particles to different GPUs

• Most computations are independent between GPUs.

• Inter-GPU communication is limited to reduce sum of shared blocks.

• Inter-GPU Synchronization is required once a time step.

43



Block Tagging

44



…

…

Multiple GPU workflow
Step1

P2G

Grid 
computation

G2P

Inter-GPU 
Reduce Sum 

Step1

P2G

Grid 
computation

G2P

Inter-GPU 
Reduce Sum 

Step1

P2G

Grid 
computation

G2P

Inter-GPU 
Reduce Sum 

Step1

P2G

Grid 
computation

G2P

Inter-GPU 
Reduce Sum 

Step 0

P2G

Grid 
computation

G2P

Rebuild mapping

Particle sorting

Block Tagging

Inter-GPU 
Reduce Sum 

Step N

P2G

Grid 
computation

G2P

Rebuild mapping

Particle sorting

Block Tagging

Inter-GPU 
Reduce Sum 

45



Block Tagging
Naïve Implementation

Our Implementation

46



Multiple-GPU time step

47



Implementation of inter-GPU barrier

48



Implementation of inter-GPU barrier

ti
m

e
 p

e
r 

fr
am

e 
(m

s)

number of particles
49



Implementation of the inter-GPU barrier

50



Topology of GPU interconnection

51



52



Implementation of inter-GPU reduce sum

block 0 block 1 block 2 block 3

Wrtie to global 
memory

P2P read

For each block

sum when 
necessary

53



Overlapping communication and compute

ti
m

e 
p

e
r 

fr
am

e
 (

m
s)

number of particles

one stream

two streams

54



Principles of multiple GPU MPM

• Minimizing the number of transfers and synchronizations between 
GPUs

• Minimizing the amount of data transferred between the GPUs and 
the subsequent computations.

• Use in-kernel peer-to-peer (P2P) read/write operations for inter-GPU 
communication

• Overlap P2P data transfer and computation through warp-interleaved 
execution when using NVLINK.

55



Content

• Background

• Single GPU

• Multiple GPU

• Benchmark and demo

56



Benchmark – Single GPU

3
.1

6
.3

2
1

.2

1
2

2
.0

4
3

7
.8

2
6

.5

3
5

.8

6
1

.7

2
3

8
.8

7
6

1
.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

13.8K 55.3K 389.3K 3.1M 12.6M

our impl. Wang et al.

7
5

9
%

4
6

4
%

1
9

1
% 9

6
%

7
4

%

0%

100%

200%

300%

400%

500%

600%

700%

800%

13.8K 55.3K 389.3K 3.1M 12.6M

Wang et al.

ti
m

e 
p

e
r 

fr
am

e
 (

m
s)

number of particles
number of particles

Sp
e

ed
 u

p
 r

at
io

57*Tested on NVIDIA Tesla V100



Benchmark – Four GPUs

4
.1

8
.3

3
6

.0

1
1

3
.7

6
0

.7

7
6

.0

1
3

7
.9

2
8

0
.1

0.0

50.0

100.0

150.0

200.0

250.0

300.0

55.3K 389.3K 3.1M 12.6M

our impl. Wang et al.

1
3

8
5

%

8
1

6
%

2
8

3
% 1
4

6
%

0%

200%

400%

600%

800%

1000%

1200%

1400%

1600%

55.3K 389.3K 3.1M 12.6M

Wang et al.

number of particles
number of particles

ti
m

e 
p

e
r 

fr
am

e
 (

m
s)

Sp
e

ed
 u

p
 r

at
io

58*On 4 x NVIDIA Tesla V100 with NVLINK



3
8

.8
%

6
3

.9
%

8
4

.7
%

9
6

.3
%

1
4

.7
%

2
0

.3
%

4
3

.3
%

6
7

.9
%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

55.3K 389.3K 3.1M 12.6M

our effi. Wang et al.'s effi.

𝑒 =
𝑡𝑖𝑚𝑒(1 𝐺𝑃𝑈)

𝑡𝑖𝑚𝑒 𝑛 𝐺𝑃𝑈 ∗ 𝑛

Benchmark – MultiGPU efficiency

number of particles

59*On 4 x NVIDIA Tesla V100 with NVLINK



60


